MODELING NONIGNORABLE MISSING DATA WITH ITEM RESPONSE THEORY (IRT)
نویسندگان
چکیده
منابع مشابه
Joint modeling of event time and nonignorable missing longitudinal data.
Survival studies usually collect on each participant, both duration until some terminal event and repeated measures of a time-dependent covariate. Such a covariate is referred to as an internal time-dependent covariate. Usually, some subjects drop out of the study before occurrence of the terminal event of interest. One may then wish to evaluate the relationship between time to dropout and the ...
متن کاملNonignorable data in IRT models: Polytomous responses and response propensity models with covariates
Missing data usually present special problems for statistical analyses, especially when the data are not missing at random, that is, when the ignorability principle defined by Rubin (1976) does not hold. Recently, a substantial number of articles have been published on model-based procedures to handle nonignorable missing data due to item nonresponse (Holman & Glas, 2005; Glas & Pimentel, 2008;...
متن کاملIRT-FIT: SAS® Macros for Fitting Item Response Theory (IRT) Models
Psychometrics has recently seen the development of complex measurement models to better represent test and item data. Item Response Theory (IRT), in particular, comprises a set of non-linear latent variable models that appear to have several conceptual and empirical properties that make them more valuable in practice than classical test theory methods. However, IRT-based models typically requir...
متن کاملItem Response Theory Modeling for Microarray Gene Expression Data
The high dimensionality of global gene expression profiles, where number of variables (genes) is very large compared to the number of observations (samples), presents challenges that affect generalizability and applicability of microarray analysis. Latent variable modeling offers a promising approach to deal with high-dimensional microarray data. The latent variable model is based on a few late...
متن کاملEmpirical likelihood inference in linear regression with nonignorable missing response
Parameter estimation for nonignorable nonresponse data is a challenging issue as the missing mechanism is unverified in practice and the parameters of response probabilities need to be estimated. This article aims at applying the empirical likelihood to construct the confidence intervals for the parameters of interest in linear regression models with nonignorable missing response data and the n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ETS Research Report Series
سال: 2010
ISSN: 2330-8516
DOI: 10.1002/j.2333-8504.2010.tb02218.x